Introduction

Mathematics Stage 4 Diagnostic Tasks have been designed to assist secondary teachers in accurately identifying skills, knowledge and understandings of students in Stage 4. They are intended to be a diagnostic snapshot of learning key ideas and concepts from the NSW Mathematics K-10 Syllabus for the Australian Curriculum. This resource is one example of assessment for learning, other forms of assessment include hands-on tasks, practical activities, investigations, observations and anecdotal evidence. A wide range of assessments are also used by teachers to identify teaching points and learning needs for all students.

TABLE OF CONTENTS

1. Computation with Integers ... 2
2. Fractions, Decimals and Percentages ... 5
3. Financial Mathematics .. 9
4. Ratios and Rates .. 11
5. Algebraic Techniques 1 ... 13
6. Algebraic Techniques 2 ... 14
7. Indices .. 15
8. Equations ... 18
9. Linear Relationships .. 20
10. Length .. 25
11. Area ... 28
12. Volume .. 31
13. Time ... 34
14. Right Angled Triangles .. 36
15. Properties of Geometric Figures (Part 1) .. 38
16. Properties of Geometric Figures (Part 2) .. 42
17. Angles .. 43
18. Data Collection and Representation .. 47
19. Single Variable Data Analysis .. 51
20. Probability (Part 1) .. 53
21. Probability (Part 2) .. 55
Stage 4: Computations with Integers

Name:
Class:

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

STUDENTS HAVE LEARNT
☐ Reading, writing and ordering numbers of any size
☐ The place value of digits in numbers
☐ Recording numbers in expanded notation
☐ Factors, HCF (highest common factor), LCM (lowest common multiple)
☐ Overall average
☐ Identifying prime and composite numbers
☐ Square and triangular numbers
☐ Locating negative numbers on a number line
☐ Addition and subtraction
☐ Creating a simple budget
☐ Multiplication and division
☐ Interpreting remainders in division problems
☐ Recognising and using grouping symbols
☐ Applying the order of operations in calculations
☐ Solving worded problems and recording strategy used

Refer to Stage 3 Whole Numbers, Addition and Subtraction, Multiplication and Division.
SYLLABUS REFERENCE
MA4-4NA compares, orders and calculates with integers, applying a range of strategies to aid computation.

QUESTION 1

ORDERING INTEGERS

a) What is an integer?

b) Place the following integers on a number line

-4, 3, 6, -2, 2, -5, 1

\[\begin{array}{cccccccc}
& & & & & & & \\
-5 & -4 & -2 & 0 & 2 & 3 & 6 &
\end{array} \]

c) Write this set of integers in ascending order (smallest to largest)

9, -1, 0, 5, -4, 8

\[\begin{array}{cccccc}
9 & -1 & 0 & 5 & -4 & 8
\end{array} \]

d) Complete the following using the symbols < or >

i) 4 \(-1 \)

ii) \(-5\) \(-2\)

iii) 0 \(-3\)

QUESTION 2

ADDING AND SUBTRACTING INTEGERS

Evaluate each expression:

a) \(3 + 6 = \)

b) \(-4 + 3 = \)

c) \(-2 - 2 = \)

d) \(0 - 6 = \)

QUESTION 3

MULTIPLYING AND DIVIDING INTEGERS

Evaluate each expression:

a) \(-3 \times 6 = \)

b) \(-4 \times -3 = \)

c) \(15 \div -3 = \)

d) \((-12) \div (-6) = \)

e) \(-18 \div 6 = \)
STAGE 4: COMPUTATIONS WITH INTEGERS

QUESTION 4

Evaluate each expression:

a) $24 - 5 \times 6 = \underline{\hspace{1cm}}$

b) $45 \div 5 - 10 = \underline{\hspace{1cm}}$

c) $-3 \times 6 + 33 = \underline{\hspace{1cm}}$

d) $-100 \div 10 + 9 = \underline{\hspace{1cm}}$

e) $8 + (6 + 4) \div 2 = \underline{\hspace{1cm}}$

QUESTION 5

Use a calculator to evaluate each expression:

a) $-28 + 12 = \underline{\hspace{1cm}}$

b) $-44 + 56 \times 4 = \underline{\hspace{1cm}}$

c) $80 - (20 - 16) \times 3 = \underline{\hspace{1cm}}$

QUESTION 6

a) The temperature in Bathurst was 15°C at midday. By dusk the temperature was -8°C. How much had the temperature dropped?

b) Jan dropped a rock from the top of a cliff 15 metres above sea level. The rock hit the ocean floor 5 metres below sea level. How far did the rock fall?

c) Sandra’s bank account balance showed -$50

i) Does this mean she has $50 or owes $50?

ii) Sandra decides to deposit $200 into her account what is her new balance?
Stage 4: Fractions, Decimals and Percentages

Name:
Class:

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

<table>
<thead>
<tr>
<th>STUDENTS HAVE LEARNT</th>
<th>SYLLABUS CONTENT AREAS RELATED TO THE OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Comparing and ordering unit fractions</td>
<td></td>
</tr>
<tr>
<td>□ Expressing mixed numerals as improper fractions and vice versa</td>
<td></td>
</tr>
<tr>
<td>□ Adding and subtracting fractions, including mixed numerals with the same denominator</td>
<td></td>
</tr>
<tr>
<td>□ Applying the place value system for decimals</td>
<td></td>
</tr>
<tr>
<td>□ Comparing and ordering decimals up to three decimal places</td>
<td></td>
</tr>
<tr>
<td>□ Determining and generating equivalent fractions</td>
<td></td>
</tr>
<tr>
<td>□ Writing fractions in simplest form</td>
<td></td>
</tr>
<tr>
<td>□ Multiplying fractions by whole numbers</td>
<td></td>
</tr>
<tr>
<td>□ Finding a simple fraction of a quantity</td>
<td></td>
</tr>
<tr>
<td>□ Multiplying decimals by one- and two-digit whole numbers</td>
<td></td>
</tr>
<tr>
<td>□ Dividing decimals by one-digit whole numbers</td>
<td></td>
</tr>
<tr>
<td>□ Multiplying and dividing decimals by 10, 100 and 1000</td>
<td></td>
</tr>
<tr>
<td>□ Solving word problems involving fractions and decimals</td>
<td></td>
</tr>
<tr>
<td>□ Making connections between equivalent fractions, decimals and percentages</td>
<td></td>
</tr>
<tr>
<td>□ Calculating 10%, 25% and 50% of quantities, including as discounts</td>
<td></td>
</tr>
</tbody>
</table>

Refer to Stage 3 Fractions and Decimals, part 1 and 2.
STAGE 4: FRACTIONS, DECIMALS AND PERCENTAGES

SYLLABUS REFERENCE
MA4-5NA operates with fractions, decimals and percentages.

QUESTION 1

EXPRESS IMPROPER FRACTIONS AS MIXED NUMERALS AND VICE VERSA

a) Change the following into a mixed numeral:
 i) \(\frac{7}{3} = \) \(\frac{23}{10} \)
 ii) \(\frac{23}{4} = \)

b) Change the following into an improper fraction:
 i) \(3 \frac{1}{3} = \)
 ii) \(2 \frac{3}{4} = \)

QUESTION 2

GENERATE EQUIVALENT FRACTIONS

WRITE FRACTION IN SIMPLEST FORM

a) Complete the equivalent fraction:
 i) \(\frac{2}{7} = \frac{6}{21} \)
 ii) \(\frac{3}{20} = \)

b) Simplify the following:
 i) \(\frac{6}{8} = \)
 ii) \(\frac{40}{100} = \)

QUESTION 3

APPLY THE FOUR OPERATIONS WITH FRACTIONS AND DECIMALS

a) Find the simplest answer for the following:
 i) \(\frac{2}{3} + \frac{1}{4} = \) \(\frac{2}{3} \times \frac{1}{4} = \)
 ii) \(\frac{5}{6} - \frac{3}{6} = \) \(\frac{3}{10} + \frac{1}{5} = \)
 iii) \(\frac{2}{5} - \frac{1}{2} = \) \(\frac{1}{6} \div \frac{1}{4} = \)
 iv) \(\frac{4}{5} \times \frac{2}{11} = \) \(2 \div \frac{4}{7} = \)
STAGE 4: FRACTIONS, DECIMALS AND PERCENTAGES

QUESTION 3

b) Evaluate the following:

i) \(83.65 - 2.43 = \)

ii) \(0.02 + 29.1 = \)

iii) \(43.52 \times 10 = \)

iv) \(77.879 \div 1000 = \)

v) \(2.3 \times 4.5 = \)

vi) \(6.6 \div 1.1 = \)

vii) \(0.23 \div 0.1 = \)

QUESTION 4

a) Complete the following table:

<table>
<thead>
<tr>
<th>FRACTION</th>
<th>DECIMAL</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2}{5})</td>
<td>0.3</td>
<td>12.5%</td>
</tr>
</tbody>
</table>

b) Write the following in ascending order:

\(\frac{5}{5}, 2, 30\%, 1, 0.34, -4.3, \frac{3}{3} \)

QUESTION 5

Express the following as a fraction and then as a percentage:

a) \(20 \text{ min of } 1\text{hr} = \)

b) \(200\text{ml of } 2\text{L} = \)
STAGE 4: FRACTIONS, DECIMALS AND PERCENTAGES

QUESTION 6

ROUND DECIMALS TO A SPECIFIED NUMBER OF PLACES
USE THE NOTATION OF RECURRING DECIMALS

a) Round off the following to the number of decimal places in brackets:

i) 0.344 (1 decimal place)

ii) 12.565 (2 decimal places)

iii) 365.998 (nearest tenth)

b) Write as recurring decimals using the correct notation:

i) 0.33333333333...

ii) 34.3721721721...

QUESTION 7

CONVERT FRACTIONS INTO RECURRING DECIMALS

a) Convert the following fractions into decimals

i) \(\frac{2}{3} \)

ii) \(\frac{2}{9} \)

b) Use a calculator to convert the following decimals into fractions

i) 0.6

ii) 1.45

QUESTION 8

SOLVE PROBLEMS INVOLVING FRACTIONS, DECIMALS AND PERCENTAGES

a) Maria received her exam results and achieved 78% in Art, 19/25 in English and 32/40 in Maths. In which exam did she achieve the highest result?

b) Lisa decided to hire some computer games to play during the school holidays. The games cost $5.50 each. She has $20.00 to spend.

i) How many games can she hire?

ii) How much change will she be left with?
Stage 4: Financial Mathematics

Name: ___

Class: ___

STAGE 4: FINANCIAL MATHEMATICS

SYLLABUS REFERENCE
MA4-6NA solves financial problems involving purchasing goods.

QUESTION 1 PERFORM CALCULATIONS INVOLVING GST

a) What does GST stand for? ___

i) What does GST inclusive mean? ___

ii) What does GST exclusive mean? ___

iii) What does pre-GST mean? ___

iv) What is the rate of GST? ___

b) The following items do not have GST added to them. Find the GST of the following:

i) Scooter: $120 ___

ii) Computer: $980.95 ___

c) The following items are GST inclusive. Find the GST of the following:

i) Toy racing car: $99 ___

ii) iPad: $880 ___

d) Determine the pre-GST prices of the following goods:

i) Mobile phone: $250 ___

ii) Play Station 3: $345 ___

QUESTION 2 CALCULATE DISCOUNTS AND ‘BEST BUYS’

a) Lisa saw a sports bag she liked for $45. The store she was buying it from had a 30% discount storewide.

i) How much did she save? ___

ii) How much did she pay for the bag? ___

b) Robix cereal comes in three sizes; 300g for $2.50, 600g for $5.00 and 1kg for $8.00.

Which is the best buy? ___
QUESTION 3

SOLVE PROBLEMS INVOLVING PROFIT AND LOSS

a) Lisa bought a bike for $150 and later sold it for $220. Find the profit as a percentage of the cost price.

b) At the half yearly sales, toys were sold for 10% below cost. A toy was sold for $150. Calculate the cost price and the loss.
Stage 4: Ratio and Rates

Name: __

Class: __

STAGE 4: RATIO AND RATES

SYLLABUS REFERENCE
MA4-7NA operates with ratios and rates, and explores their graphical representation.

QUESTION 1

SIMPLIFY RATIOS

a) For the following, write the first quantity as a fraction of the other and then simplify:
 i) 4 girls, 7 girls ____________________
 ii) 5kg, 10kg ______________________

b) Simplify the following ratios:
 i) 4:6 _____________________________
 ii) 1:2 = _________________________
 iii) 0.3:1 _________________________

 c) How many parts in the following ratios:
 i) 3:5 _____________________________
 ii) 2:11 __________________________

QUESTION 2

SOLVE PROBLEMS INVOLVING RATIOS

a) Divide $40 in the ratio 3:5 _____________________________

b) Jamie and Richie won prize money and shared it in the ratio 3:4. If the total prize money was $21,000, how much prize money did each person receive?

 __

 c) There are 22 students in a class, twelve of whom are girls. Find the ratio of the following:
 i) girls : students ____________________
 ii) girls : boys ______________________

 d) In a rectangle, the ratio of the length to the width is 7:4. The width is 12cm. Find the length.

 __
STAGE 4: RATIO AND RATES

QUESTION 3

CONVERT INTO SIMPLIFIED RATE

a) Write the following as a rate:
 i) 150km in 2 hours
 ii) 5.6m in 6 hours

b) Convert the following:
 i) 25c/min to $/h
 ii) 20cm/sec to m/h

QUESTION 4

SOLVE PROBLEMS INVOLVING RATES

a) Amanda walks 300m in 12 minutes. How far can she walk in an hour?

b) Greg runs 120m in 20 seconds. Find his speed in metres per second.

QUESTION 5

INTERPRET DISTANCE/TIME GRAPHS

The travel graph below shows Emma’s trip on Saturday. Emma picked up her friend Sally and went for a walk to Central park where they sat and had lunch. They then sprinted back to Emma’s house. Answer the following questions:

i) How many stops did Emma make?

ii) What unit of measurement is used on the horizontal axis?

iii) What time did Emma pick up Sally?

iv) How long did they stop and have lunch?

v) At what time did they arrive home?
Stage 4: Algebraic Techniques 1

Name: __

Class: __

SYLLABUS REFERENCE

MA4-8NA generalises number properties to operate with algebraic expressions.

QUESTION 1 USE LETTERS TO REPRESENT NUMBERS

If \(a = 3, \ b = 2 \) and \(c = 4 \), evaluate:

a) \(a + c = \) ____________________________
c) \(5a - b = \) ____________________________

b) \(\frac{12}{a} = \) ____________________________

QUESTION 2 RECOGNISE AND USE SIMPLE EQUIVALENT ALGEBRAIC EXPRESSIONS

a) Expand the following by placing multiplication or division symbols.

i) \(6m = \) ____________________________
ii) \(h = \) ____________________________

b) Simplify:

i) \(5 \times b \times c = \) ____________________________
ii) \(6 \times m \times m \times 2 = \) ____________________________

QUESTION 3 SIMPLIFY ALGEBRAIC EXPRESSIONS INVOLVING THE FOUR OPERATIONS

a) \(3x + 5x - 6x = \) ____________________________
d) \(8a - 5b + a + 2b = \) ____________________________

b) \(-5y^2 + 3y^2 = \) ____________________________
e) \(2b \times 3b = \) ____________________________

NSW Department of Education | Mathematics K-10 Syllabus Implementation
www.schools.nsw.edu.au
Stage 4: Algebraic Techniques 2

Name: ____________________________

Class: ____________________________

SYLLABUS REFERENCE

MA4-8NA generalises number properties to operate with algebraic expressions.

QUESTION 1

SUBSTITUTE INTO ALGEBRAIC EXPRESSIONS

Complete the following tables:

a)

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-1</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b)

<table>
<thead>
<tr>
<th>y</th>
<th>-2</th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y^2/4</td>
<td></td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c)

<table>
<thead>
<tr>
<th>m</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m + 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUESTION 2

EXPAND AND FACTORISE SIMPLE ALGEBRAIC EXPRESSIONS

a) Expand the following:

i) \(2(x-4) = \) ____________________________

ii) \(-2(3k-2) = \) ____________________________

iii) \(6ab = \) ____________________________

iv) \(m^3 y^2 = \) ____________________________

b) Factorise the following:

i) \(8a + 16 = \) ____________________________

ii) \(-3t - 12 = \) ____________________________

iii) \(y^2 - 3y = \) ____________________________

iv) \(2xy + 8x = \) ____________________________
Stage 4: Indices

Name:

Class:

SYLLABUS REFERENCE
MA4-9NA operates with positive-integer and zero indices of numerical bases.

QUESTION 1 USE INDEX NOTATION FOR POSITIVE INTEGRAL INDICES

a) Use index notation to simplify the following:
 i) $2 \times 2 \times 2 = \underline{\hphantom{3}}$
 ii) $3 \times 4 \times 4 \times 4 = \underline{\hphantom{3}}$

b) Write in expanded form:
 i) $2^{2} \times 5^{2} = \underline{\hphantom{3}}$
 ii) $4^{3} = \underline{\hphantom{3}}$

QUESTION 2 EXPRESS A WHOLE NUMBER AS A PRODUCT OF ITS PRIME FACTORS

Express the following as a product of its prime factors (hint: use factor trees)

a) $24 = \underline{\hphantom{3}}$

b) $100 = \underline{\hphantom{3}}$

Draw a factor tree

Draw a factor tree

QUESTION 3 APPLY THE ORDER OF OPERATIONS TO EVALUATE INDICES

Evaluate the following:

a) $4 + 5 \times 2^{2} = \underline{\hphantom{3}}$

b) $12 \div 2 + (7 + 3^{3}) = \underline{\hphantom{3}}$
STAGE 4: INDICES

QUESTION 4

DIVISIBILITY TESTS

A number is divisible by:
2 if the last digit is 0, 2, 4, 6 or 8
3 if the sum of the digits is divisible by 3
4 if the last 2 digits form a number divisible by 4
5 if the last digit is 0 or 5
6 if the number is divisible by 2 and 3
10 if the last digit is 0

Use the divisibility tests to determine if the following are true or false.

a) 325 is divisible by 3
b) 456780 is divisible by 5
c) 512 is divisible by 4
d) 312 is divisible by 6

QUESTION 5

FIND SQUARE ROOTS AND CUBE ROOTS

Evaluate the following:

a) \sqrt{25}

b) \sqrt{100}
c) \sqrt{2000} =

d) \sqrt[3]{64}

e) \sqrt[3]{125}
f) \sqrt[3]{27} \times (-3)^0 =

STAGE 4: INDICES

QUESTION 6

DETERMINE AND APPLY THE INDEX LAWS FOR NUMERICAL EXPRESSIONS WITH POSITIVE INTEGER INDICES

a) True or false:
 i) $(2 \times 3)^2 = 2^2 \times 3^2$
 ii) $\sqrt{9 \times 4} = \sqrt{9} \times \sqrt{4}$
 iii) $\sqrt{36} + 64 = \sqrt{36} + 64$
 iv) $3^2 \times 3^4 = 9^6$

b) Between which two integers does the $\sqrt{60}$ lie?

QUESTION 7

DETERMINE AND APPLY THE INDEX LAWS FOR NUMERICAL EXPRESSIONS AND THE MEANING OF THE ZERO INDEX

Simplify the following:

a) $4^2 \times 4^3 = $
 d) $7^0 = $
 b) $5^6 \div 5^2 = $
 e) $(-1/2)^0 = $
 c) $(2^3)^2 = $

QUESTION 8

VERIFY THE INDEX LAWS USING A CALCULATOR

Evaluate the following:

a) $4^6 = $
 d) $(2^{15})^3 + 2 \times \sqrt[3]{64} = $
 b) $\sqrt{896} = $
 e) $(3^7 \times 3^8) = $
 c) $\sqrt[3]{2000} = $
 f) $-(3^8 \times (-3)^6)^0 = $
Stage 4: Equations

Name:

Class:

SYLLABUS REFERENCE

MA4-10NA uses algebraic techniques to solve simple linear and quadratic equations.

QUESTION 1

SOLVE SIMPLE LINEAR EQUATIONS

a) Given that \(x = 4 \), determine if the following are true or false.
 i) \(3x = 12 \) \[\checkmark \]
 ii) \(2x - 1 = 9 \) \[\checkmark \]
 iii) \(4x - 1 = \frac{5}{3} \) \[\checkmark \]

b) Write an algebraic equation for the following:
 i) The product of 3 and \(x \) is equal to 15
 ii) The sum of 2 and \(y \), all squared, is equal to 25

c) Solve the following linear equations, check solutions by substituting:
 i) \(y - 6 = 14 \) \[\checkmark \] \(y = 20 \)
 ii) \(3p - 5 = 13 \) \[\checkmark \] \(p = 6 \)
 iii) \(8 - 2m = 10 \) \[\checkmark \] \(m = 1 \)
 iv) \(x = 4 \) \[\checkmark \] \(\frac{6}{3} \)
 v) \(3n = 6 \) \[\checkmark \] \(n = 2 \)
 vi) \(2(x + 2) = 8 \) \[\checkmark \] \(x = 2 \)

QUESTION 2

SOLVE SIMPLE LINEAR EQUATIONS USING ALGEBRAIC TECHNIQUES

Solve the following linear equations, simplify fractions where necessary.

a) \(2m + 5 = 18 \) \[\checkmark \] \(m = 6 \)

b) \(3x + 2 = x - 5 \) \[\checkmark \] \(x = -\frac{7}{2} \)

c) \(3(p + 5) = 25 \) \[\checkmark \] \(p = \frac{10}{3} \)

b) \(3x + 2 = x - 5 \) \[\checkmark \] \(x = -\frac{7}{2} \)

c) \(3(p + 5) = 25 \) \[\checkmark \] \(p = \frac{10}{3} \)

f) \(\frac{3k + 4}{2} = 6 \)

Solve the following linear equations, simplify fractions where necessary.

a) \(2m + 5 = 18 \) \[\checkmark \] \(m = 6 \)

b) \(3x + 2 = x - 5 \) \[\checkmark \] \(x = -\frac{7}{2} \)

c) \(3(p + 5) = 25 \) \[\checkmark \] \(p = \frac{10}{3} \)
STAGE 4: EQUATIONS

QUESTION 3

DISTINGUISH BETWEEN ALGEBRAIC EQUATIONS

Write an algebraic expression for the following and solve:

a) Three more than a number multiplied by two is 21. What is the number?

b) Casey’s father is three times Casey’s age. Their combined age is 48. What are their individual ages?

QUESTION 4

SOLVE SIMPLE QUADRATIC EQUATION OF THE FORM $x^2 - c$

a) Solve the following quadratic equations, leaving answers in exact form:

i) $a^2 = 16$

ii) $y^2 - 64 = 0$

iii) $4x^2 - 1 = 11$

iv) $m^2 = 12$

b) Which of the following has no solution?

i) $y^2 = 16$

ii) $1 - p^2 = -8$

iii) $x^2 = -9$
Stage 4: Linear Relationships

Name:
Class:

STAGE 4: LINEAR RELATIONSHIPS

SYLLABUS REFERENCE
MA4-11NA creates and displays number patterns; graphs and analyses linear relationships; and performs transformation on the Cartesian plane.

QUESTION 1 LOCATE AND DESCRIBE POINTS ON THE CARTESIAN PLANE USING COORDINATES

Identify the following points on the number plane and write them as coordinates:

![Diagram of Cartesian plane with points A, B, C, D]

a) A ____________________
b) B ____________________
c) C ____________________
d) D ____________________

QUESTION 2 RECOGNISE DESCRIBE AND RECORD GEOMETRIC AND NUMBER PATTERNS IN WORDS AND ALGEBRAIC SYMBOLS

Find the next three terms in the number pattern:

a) 9, 7, 5, 3,... ____________________ b) -10, -8, -6... ____________________
STAGE 4: LINEAR RELATIONSHIPS

QUESTION 3 RECOGNISE DESCRIBE AND RECORD GEOMETRIC AND NUMBER PATTERNS IN WORDS AND ALGEBRAIC SYMBOLS

Complete the table for the following geometric pattern:

\[\text{Number of pentagons (P)} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 10 \\
\text{Number of sides (S)} \quad 5 \quad \quad \quad \quad 17 \\
\]

a) Complete the following statement. The number of sides S equals \[\text{times the number of pentagons plus} \]
b) Write the rule for the table as a formula \[\]
c) How many sides are needed to form 100 pentagons? \[\]

QUESTION 4 INCREASING AND DECREASING LINES

Determine if the following linear graphs are increasing or decreasing.

a) \[\]
b) \[\]

\[\]

\[\]
STAGE 4: LINEAR RELATIONSHIPS

QUESTION 5

PLOT LINEAR RELATIONSHIPS CREATED FROM SIMPLE PATTERNS AND EQUATIONS

a) Complete the following table of values for the following:
\[y = x + 1 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Plot the linear relationship on a number plane.

![Number plane diagram with points plotted for \(y = x + 1 \)]
STAGE 4: LINEAR RELATIONSHIPS

QUESTION 6

a) Using the graph below, complete the table of values.

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Find the equation of the line

![Graph with points marked](image)

QUESTION 7

Circle the two linear equations that are parallel:

- $y = 3x + 3$
- $y = 2x + 1$
- $y = 3x$
STAGE 4: LINEAR RELATIONSHIPS

QUESTION 8

SOLVE SIMPLE LINEAR EQUATIONS USING GRAPHICAL TECHNIQUES

Use the graph below to find the solution to the equation $x + 2 = 1$.

[Diagram of a coordinate plane with lines and points]

$y = x + 2$

$x = \underline{\hspace{2cm}}$

QUESTION 9

POINT OF INTERSECTION OF TWO LINES

At what point do these two lines intersect? (__, __)

[Diagram of a coordinate plane with lines intersecting]

$y = x + 1$

$y = -x + 3$
Stage 4: Length

Name:

Class:

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

STUDENTS HAVE LEARNT

☐ Using the kilometres to measure lengths and distances
☐ Selecting and using appropriate instruments and units to measure lengths
☐ Recording lengths and distances using the abbreviations km, m, cm and mm
☐ Finding perimeters of common two-dimensional shapes and recording the strategy
☐ Recording lengths and distances using decimal notation to three decimal places
☐ Converting between kilometres, metres, centimetres and millimetres
☐ Solving problems involving length and perimeter

Refer to Stage 3 Length.
STAGE 4: LENGTH

SYLLABUS REFERENCE
MA4-12MG calculates the perimeters of plane shapes and the circumferences of circles.

QUESTION 1

Find the perimeter of the following:

a) \[\text{P} = \]

b) \[\text{P} = \]

c) \[\text{P} = \]

d) \[\text{P} = \]

QUESTION 2

Find the unknown sides. Calculate the perimeter of this composite shape.

\[\text{P} = \]

QUESTION 3

a) Use your calculator to round \(\pi \) to 4 decimal places
\[\pi = \]

b) Find the circumference of the following, answer in exact form in terms of \(\pi \):

i) \[d = 8 \text{ cm} \] \[C = \]

ii) \[5 \text{ cm} \] \[C = \]
STAGE 4: LENGTH

QUESTION 4

FIND ARC LENGTHS AND THE PERIMETERS OF QUADRANTS, SEMI-CIRCLES AND SECTORS

Find the arc length (L) and perimeter (P) of the following:

- Diameter = 8 cm
- Radius = 6 cm
- Radius = 3 cm

QUESTION 5

SOLVE PROBLEMS INVOLVING PERIMETER AND CIRCUMFERENCE

a) A rectangle has a perimeter of 90 cm. If its length is 20 cm, find its width.

b) Lisa wanted to order tiles to lay around the edge of her pool. One end of her pool is shaped as a semi-circle. How many metres of tiles does she need to order?

6 m
Stage 4: Area

Name:

Class:

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

STUDENTS HAVE LEARNT

☐ Recognising the need for square kilometres and hectares to measure area
☐ Recording areas using the abbreviations km² and ha
☐ Developing a strategy to find areas of rectangles (including squares) and recording the strategy in words
☐ Developing a strategy to find areas of triangles and recording the strategy in words
☐ Solving problems involving areas of rectangles (including squares) and triangles

Refer to Stage 3 Area.
STAGE 4: AREA

SYLLABUS REFERENCE
MA4-13MG uses formulas to calculate the areas of quadrilaterals and circles, and converts between units of area.

QUESTION 1
CONVERT BETWEEN METRIC UNITS OF AREA

Convert the following:

a) 800mm² = __________ cm²
b) 2.5km² = __________ m²

QUESTION 2
USE Formulas to FIND the AREAS of TRIANGLES, SPECIAL QUADRILATERALS

Find the area of the following:

a)

\[\text{A} = \frac{9 \text{mm} \times 12 \text{mm}}{2} \]

b)

\[\text{A} = \frac{6 \text{cm} \times 10 \text{cm}}{2} \]

c)

\[\text{A} = \frac{8 \text{cm} \times 20.5 \text{cm}}{2} \]

d)

\[\text{A} = \frac{6.9 \text{m} \times 18 \text{m}}{2} \]

e)

\[\text{A} = \frac{7 \text{cm} \times 10 \text{cm}}{2} \]

f)

\[\text{A} = \frac{6 \text{cm} \times 30 \text{cm}}{2} \]

g)

\[\text{A} = \frac{16 \text{cm} \times 9 \text{cm}}{2} \]
STAGE 4: AREA

QUESTION 3 USE FORMULAS TO FIND THE AREAS OF CIRCLES

Find the area of the following:

a)

\[A = \frac{9}{2} \times 9 \times 9 = \frac{81}{2} \text{ cm}^2 \]

b)

\[A = \frac{3.2}{2} \times \frac{3.2}{2} \times \frac{1}{2} \times \frac{150}{180} \times \pi = 1.6 \times 1.6 \times \frac{1}{2} \times \frac{5}{6} \pi = 1.6 \times 1.6 \times \frac{5}{6} \times 0.5 \times 3.1416 = 3.03 \text{ cm}^2 \]

QUESTION 4 SOLVE PROBLEMS INVOLVING AREA

a) Greg wanted to tile a room. The tiles he chose cost $25/m². His room is 3m by 4.3m. What is the cost of the tiles?

\[\text{Area} = 3 \times 4.3 = 12.9 \text{ m}^2 \]

\[\text{Cost} = 12.9 \times 25 = 322.5 \text{ dollars} \]

b) Lisa’s dad owns a paddock that measures 900m by 800m. He wants to put a fence on a diagonal across his land. What is the area of each triangular block in hectares?

\[\text{Area} = \frac{900 \times 800}{2} = 360,000 \text{ m}^2 = 36 \text{ hectares} \]
Stage 4: Volume

Name:

Class:

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

<table>
<thead>
<tr>
<th>STUDENTS HAVE LEARNT</th>
<th>SYLLABUS CONTENT AREAS RELATED TO THE OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Using cubic centimetres and cubic metres to measure and estimate volumes</td>
<td>- Selecting and using appropriate units to measure volume</td>
</tr>
<tr>
<td>- Selecting and using appropriate units to measure volume</td>
<td>- Recording volumes using the abbreviations cm3 and m3</td>
</tr>
<tr>
<td>- Recording volumes using the abbreviations cm3 and m3</td>
<td>- Connecting volume and capacity and their units of measurement</td>
</tr>
<tr>
<td>- Connecting volume and capacity and their units of measurement</td>
<td>- Recording volumes and capacities using decimal notation to three decimal places</td>
</tr>
<tr>
<td>- Recording volumes and capacities using decimal notation to three decimal places</td>
<td>- Converting between millilitres and litres</td>
</tr>
<tr>
<td>- Converting between millilitres and litres</td>
<td>- Developing a strategy to find volumes of rectangular prisms and recording the strategy in words</td>
</tr>
<tr>
<td>- Developing a strategy to find volumes of rectangular prisms and recording the strategy in words</td>
<td>- Recognising the need for tonnes to measure mass</td>
</tr>
<tr>
<td>- Recognising the need for tonnes to measure mass</td>
<td>- Recording masses using the abbreviations t, kg and g</td>
</tr>
<tr>
<td>- Recording masses using the abbreviations t, kg and g</td>
<td>- Selecting and using appropriate instruments and units to measure mass</td>
</tr>
<tr>
<td>- Selecting and using appropriate instruments and units to measure mass</td>
<td>- Distinguishing between ‘gross mass’ and ‘net mass’</td>
</tr>
<tr>
<td>- Distinguishing between ‘gross mass’ and ‘net mass’</td>
<td>- Solving problems involving mass</td>
</tr>
<tr>
<td>- Solving problems involving mass</td>
<td>- Recording mass using decimal notation to three decimal places</td>
</tr>
<tr>
<td>- Recording mass using decimal notation to three decimal places</td>
<td>- Converting between tonnes, kilograms and grams</td>
</tr>
</tbody>
</table>

Refer to Stage 3 Volume and Capacity, Mass.
STAGE 4: VOLUME

SYLLABUS REFERENCE
MA4-14MG uses formulas to calculate the volumes of prisms and cylinders, and converts between units of volume.

QUESTION 1
VISUALISE AND DRAW DIFFERENT VIEWS OF THREE-DIMENSIONAL OBJECTS

Draw the following views for the solid below:

a) Top view:

b) Side view:

c) Front view:

QUESTION 2
IDENTIFY AND DRAW THE CROSS-SECTIONS OF DIFFERENT PRISMS

Identify and draw the uniform cross-section of each three-dimensional object:

a)

b)

c)

SYLLABUS REFERENCE
MA4-14MG uses formulas to calculate the volumes of prisms and cylinders, and converts between units of volume.

QUESTION 3
CONVERT BETWEEN METRIC UNITS OF VOLUME AND CAPACITY

Convert the following:

a) $5000\text{mm}^3 = \underline{\quad}\text{cm}^3$

b) $4.2\text{L} = \underline{\quad}\text{ml}$

c) $2.6\text{m}^3 = \underline{\quad}\text{L}$

d) $6.2\text{kL} = \underline{\quad}\text{L}$
QUESTION 4

ESTABLISH AND USE FORMULAS TO FIND VOLUMES OF RIGHT PRISMS AND CYLINDERS

Find the volume of the following:

a) \(V = \)

\[\text{area of base} \times \text{height} \]

\[(9 \text{ cm} \times 4 \text{ cm}) \times 3 \text{ cm} = 108 \text{ cm}^3 \]

b) \(V = \)

\[\pi r^2 h \]

\[\pi (2.5 \text{ cm})^2 (7 \text{ m}) = 35.34 \text{ m}^3 \]

c) \(V = \)

\[\frac{1}{3} \times \text{area of base} \times \text{height} \]

\[\frac{1}{3} \times (4 \text{ cm} \times 6.2 \text{ cm}) \times 2.5 \text{ cm} = 16.67 \text{ cm}^3 \]

d) \(V = \)

\[\pi r^2 h \]

\[\pi (4 \text{ cm})^2 (6 \text{ m}) = 301.45 \text{ m}^3 \]

QUESTION 5

SOLVE PROBLEMS INVOLVING VOLUME AND CAPACITY

(Hint: draw diagrams)

a) A cylindrical tank has a radius of 3 m and a height of 12 m.
 i) What is the volume of the tank?
 \[\pi r^2 h = \pi (3 \text{ m})^2 (12 \text{ m}) = 339.30 \text{ m}^3 \]
 ii) How much water can it hold in litres?
 \[339.30 \text{ m}^3 = 339300 \text{ litres} \]
 iii) How much water can it hold in millilitres?
 \[339300 \text{ litres} = 339300000 \text{ millilitres} \]

b) A box is used to store 1 litre milk cartons. If the box can hold 24 milk cartons, identify the possible dimensions of the box.

\[\text{volume of box} = 24 \times 1 \text{ litre} = 24 \text{ litres} \]

\[\text{volume of box} = 24 \times 1000 \text{ millilitres} = 24000 \text{ millilitres} \]
Stage 4: Time

Name:

Class:

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

<table>
<thead>
<tr>
<th>STUDENTS HAVE LEARNT</th>
<th>SYLLABUS CONTENT AREAS RELATED TO THE OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Converting between 12 and 24-hour time</td>
<td></td>
</tr>
<tr>
<td>☐ Determining and comparing the duration of events</td>
<td></td>
</tr>
<tr>
<td>☐ Interpreting and using timetables</td>
<td></td>
</tr>
<tr>
<td>☐ Drawing and interpreting timelines using a given scale</td>
<td></td>
</tr>
</tbody>
</table>

Refer to Stage 3 Time.
STAGE 4: TIME

SYLLABUS REFERENCE
MA4-15MG performs calculations of time that involve mixed units, and interprets time zones.

QUESTION 1
PERFORM OPERATIONS WITH TIME UNITS MENTALLY AND WITH A CALCULATOR

Convert the following:

a) 72 hours = ____________ days
c) 30240 min = ____________ weeks

b) $\frac{3}{4}$ hours = ____________ minutes
d) 9.25 hours = ____________ seconds

QUESTION 2
SOLVE PROBLEMS INVOLVING TIME DURATION

a) Convert the following into 24 hour time:

i) 2.26 am

ii) 9:14 pm

iii) 12:36 am

b) Use your calculator to convert the following into hours, minutes and seconds:

i) 9.67 h

ii) 5.25 h

iii) 7.93 h

c) Calculate the time difference for the following:

i) 2:45 am to 5 am

ii) 6:45 pm to 3:15 pm

iii) 8:25 am to 2:45 pm

d) Use your calculator to calculate the time difference for the following:

i) 4 hours 20 min to 6 hours 15 min

ii) 4 hours 15 min 30 sec to 11 hours 7 min 8 sec

QUESTION 3
INTERPRET INTERNATIONAL TIME ZONES

a) Given that London is 10 hours behind Sydney, what time is it in London when it is 5:00 pm in Sydney?

b) Sue needs to call Adam in Western Australia. Western Australia is 2 hours behind New South Wales. What time should Sue call Adam at 9.00 am Western Australia time?
Stage 4: Right Angled Triangles

Name: ________________________________
Class: ________________________________

STAGE 4: RIGHT ANGLED TRIANGLES

SYLLABUS REFERENCE
MA4-16MG applies Pythagoras' theorem to calculate side lengths in right-angled triangles, and solves related problems.

QUESTION 1
IDENTIFY THE HYPOTENUSE

Name the hypotenuse in each of these triangles:

a) [Diagram of triangle with hypotenuse WY]
 b) [Diagram of triangle with hypotenuse n]

QUESTION 2
APPLY PYTAGORAS THEOREM TO FIND SIDES IN RIGHT-ANGLED TRIANGLE

Find the length of the unknown side in the following. Leave answers in exact form.

a) [Diagram of triangle with sides 5 cm and 12 cm]
 x cm
 b) [Diagram of triangle with sides 9 m and 6 m]
 y m
STAGE 4: RIGHT ANGLED TRIANGLES

QUESTION 3

Is the following triangle right angled? Show working to prove your answer.

```
6 cm

10 cm
```


QUESTION 4

a) Find the length of the diagonal in a rectangle with length 8 cm and width 5 cm. Answer correct to 1 decimal place.

```
8 cm

5 cm
```

b) i) Find x

```
5 m

15 m
```

ii) Find the perimeter of this shape

```
13 m
```
Stage 4: Properties of Geometric Figures (Part 1)

Name: __

Class: __

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

<table>
<thead>
<tr>
<th>STUDENTS HAVE LEARNT</th>
<th>SYLLABUS CONTENT AREAS RELATED TO THE OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Identifying, naming and drawing right-angled, equilateral, isosceles and scalene triangles</td>
<td></td>
</tr>
<tr>
<td>□ Comparing and describing side properties of the special quadrilaterals and triangles</td>
<td></td>
</tr>
<tr>
<td>□ Exploring angle properties of the special quadrilaterals and special triangles</td>
<td></td>
</tr>
<tr>
<td>□ Classifying and drawing regular and irregular two dimensional shapes from descriptions of their features</td>
<td></td>
</tr>
<tr>
<td>□ Using the terms ‘translate’, ‘reflect’ and ‘rotate’ to describe transformations of shapes</td>
<td></td>
</tr>
<tr>
<td>□ Identifying line and rotational symmetries</td>
<td></td>
</tr>
<tr>
<td>□ Making and compare enlargements of shapes/pictures</td>
<td></td>
</tr>
<tr>
<td>□ Describing, comparing and drawing diagonals of two-dimensional shapes</td>
<td></td>
</tr>
<tr>
<td>□ Identifying and naming parts of circles</td>
<td></td>
</tr>
<tr>
<td>□ Identifying, using and describing combinations of translations, reflections and rotations</td>
<td></td>
</tr>
</tbody>
</table>

Refer to Stage 3 Two Dimensional Space.
STAGE 4: PROPERTIES OF GEOMETRIC FIGURES (PART 1)

SYLLABUS REFERENCE
MA4-17MG classifies, describes and uses the properties of triangles and quadrilaterals, and determines congruent triangles to find unknown side lengths and angles.

QUESTION 1
LABEL AND NAME TRIANGLES AND QUADRILATERALS

i) Name the angles marked with (*) in the following:

ii) Name the triangle or quadrilateral:

\[a) \]

\[P \]

\[Q \]

\[R \]

\[b) \]

\[A \]

\[B \]

\[C \]

\[D \]

QUESTION 2
RECOGNISE AND CLASSIFY TRIANGLES ON THE BASIS OF THEIR PROPERTIES

Tick the boxes that best suit the triangles:

<table>
<thead>
<tr>
<th>TRIANGLE</th>
<th>OBTUSE ANGLED</th>
<th>ACUTE ANGLED</th>
<th>SCALENE</th>
<th>ISOSCELES</th>
<th>EQUILATERAL</th>
<th>RIGHT ANGLED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STAGE 4: PROPERTIES OF GEOMETRIC FIGURES (PART 1)

QUESTION 3

CLASSIFY SPECIAL QUADRILATERALS ON THE BASIS OF THEIR PROPERTIES

Tick the property that applies to the following quadrilaterals:

<table>
<thead>
<tr>
<th>RECTANGLE</th>
<th>SQUARE</th>
<th>PARALLELOGRAM</th>
<th>TRAPEZIUM</th>
<th>RHOMBUS</th>
<th>KITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposite sides are parallel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opposite sides equal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjacent sides are perpendicular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opposite angles are equal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals are equal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals bisect each other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals bisect each other at right angles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals bisect the angles of the quadrilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUESTION 4

USE PROPERTIES OF SHAPES TO FIND UNKNOWN SIDES AND ANGLES IN TRIANGLES AND QUADRILATERALS GIVING A REASON

a) The angle sum of a triangle is ___

b) The angle sum of a quadrilateral is _______________________________________
STAGE 4: PROPERTIES OF GEOMETRIC FIGURES (PART 1)

QUESTION 5

USE PROPERTIES OF SHAPES TO FIND UNKNOWN SIDES AND ANGLES IN TRIANGLES AND QUADRILATERALS GIVING A REASON

Find the value of the pronumerals in the following, give reasons for your answers:

a)
![Diagram](attachment:triangle.png)

b)
![Diagram](attachment:triangle2.png)

c)
![Diagram](attachment:parallelogram.png)

d)
![Diagram](attachment:parallelogram2.png)

e)
![Diagram](attachment:quadrilateral.png)
Stage 4: Properties of Geometric Figures (Part 2)

Name:

Class:

STAGE 4: PROPERTIES OF GEOMETRIC FIGURES (PART 2)

SYLLABUS REFERENCE
MA4-17MG classifies, describes and uses the properties of triangles and quadrilaterals, and determines congruent triangles to find unknown side lengths and angles.

QUESTION 1 IDENTIFY CONGRUENT FIGURES

a) What does congruent mean?

b) Circle any pair / pairs of shapes that are congruent.

QUESTION 2 IDENTIFY CONGRUENT TRIANGLES USING THE FOUR TESTS

a) Write down the four tests for two triangles to be congruent.

b) Which two triangles are congruent? State the test that proves them congruent.

c) Identify the test that proves that the triangles below are congruent.

i)

ii)
Stage 4: Angles

Name:

Class:

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

STUDENTS HAVE LEARNT

- Recognising the need for formal units to measure angles
- Measuring, comparing and estimating angles in degrees (up to 360°)
- Recording angle measurements using the symbol for degrees (°)
- Constructing angles using a protractor (up to 360°)
- Describing angle size in degrees for each angle classification
- Identifying and naming angle types formed by the intersection of straight lines, including ‘angles on a straight line’, ‘angles at a point’ and ‘vertically opposite angles’
- Using known angle results to find unknown angles in diagrams

Refer to Stage 3 Angles.

SYLLABUS CONTENT AREAS RELATED TO THE OUTCOME
STAGE 4: ANGLES

SYLLABUS REFERENCE
MA4-18MG identifies and uses angle relationships, including those related to transversals on sets of parallel lines.

QUESTION 1

Name the angles that are marked (●):

i)

ii)

QUESTION 2

Name the following types of angles and draw a diagram.

<table>
<thead>
<tr>
<th>DEFINITION</th>
<th>TYPE OF ANGLE</th>
<th>DIAGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>An angle that is less than 90˚</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An angle that is 90˚</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An angle that is greater than 90˚ and less than 180˚</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An angle that is 180˚</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An angle that adds up to 360˚</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STAGE 4: ANGLES

QUESTION 3
IDENTIFY AND NAME PERPENDICULAR LINES

Name two lines that are perpendicular in the diagram below using the symbol (⊥).

![Diagram]

QUESTION 4
USE THE TERMS COMPLEMENTARY AND SUPPLEMENTARY FOR ANGLES

What is the complement of 30˚?

What is the supplement of 110˚?

QUESTION 5
FIND THE SIZES OF UNKNOWN ANGLES

Find the size of each unknown angle:

a) b) c)
STAGE 4: ANGLES

QUESTION 6

IDENTIFY ALTERNATE, CORRESPONDING OR CO-INTERIOR ANGLES

State if the following angles are alternate, corresponding or co-interior angles. Also state if the angles are equal or supplementary.

QUESTION 7

FIND THE SIZES OF UNKNOWN ANGLES

Find the size of the unknown angles below:

a) b) c)
Stage 4: Data Collection and Representation

Name:

Class:

Stage 4: Data Collection and Representation

Syllabus Reference

MA4-19SP collects, represents and interprets single sets of data, using appropriate statistical displays.

Question 1

Identify variables as categorical or numerical (discrete or continuous)

Categorise the following data as categorical or quantitative (discrete or continuous)

a) Colours of cars

b) Shoe size

c) Heights of bridges

Question 2

Identify and distinguish between a ‘population’ and a ‘sample’

What is the difference between a ‘population’ and a ‘sample’ when collecting data?

STAGE 4: DATA COLLECTION AND REPRESENTATION

QUESTION 3

INVESTIGATE TECHNIQUES FOR COLLECTING DATA AND CONSIDER THEIR IMPLICATIONS AND LIMITATIONS

a) Determine which method of collecting data (observation, sample or census) is the most appropriate for the following:

i) Native animals in a local area
ii) Income of Australians
iii) Testing the effectiveness of batteries

b) Identify two limitations of collecting data through a census

1.
2.

c) The high school year advisors selected a few girls in year 9 to survey them on their ideas on how bullying should be addressed in the school.

i) Do you think that the year advisors would receive reliable feedback?

ii) Were the year advisors biased with their selection?

iii) How would you select the students for this survey?

QUESTION 4

COLLECT AND INTERPRET DATA FROM PRIMARY AND SECONDARY SOURCES, INCLUDING SURVEYS

Name two primary and two secondary sources for collecting data:

<table>
<thead>
<tr>
<th>PRIMARY SOURCE</th>
<th>SECONDARY SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STAGE 4: DATA COLLECTION AND REPRESENTATION

QUESTION 5

The students of a Year 8 mathematics class were asked how many siblings they had in their families and the results are shown below:

1 2 3 1 1 3 4 5 4 3 4 2 4 5 6 3 0

a) Complete the following frequency table and then draw a histogram and polygon to represent the data on the axis provided.

<table>
<thead>
<tr>
<th>SIBLINGS</th>
<th>TALLY</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total:</td>
</tr>
</tbody>
</table>

b) How many students were there altogether?

c) How many students had 4 siblings in their family?

d) How many students have at least 2 siblings?

e) What percentage of students have more than 3 siblings?
STAGE 4: DATA COLLECTION AND REPRESENTATION

QUESTION 6

The following dot plot shows the number of hours it takes a group of students to do their homework.

Students homework hours

a) How many students spend 3 or more hours on homework?

b) How many students were asked altogether?

c) What is the outlier?

QUESTION 7

Yasmine did a survey of how many times the members of her class had visited the canteen over the month. The results were as follows: 10 15 23 2 20 31 14 10 8 19 8 42 15 22 6 34 19 3 44

Construct an ordered stem and leaf plot for the data set above.

QUESTION 8

The sector graph below shows the favourite fruit of a population of 200 people in Adamstown.

a) What fruit was the favourite in the town?

b) What fruit was the least favourite in the town?

c) How many people liked pears?

d) What percentage of the town liked bananas?
Stage 4: Single Variable Data Analysis

Name:
Class:

STAGE 4: SINGLE VARIABLE DATA ANALYSIS

SYLLABUS REFERENCE
MA4-20SP analyses single sets of data using measures of location, and range.

QUESTION 1
CALCULATE MEAN, MEDIAN, MODE AND RANGE FOR SETS OF DATA

State three measures of location:
State a measure of spread:

QUESTION 2
CALCULATE MEAN, MEDIAN, MODE AND RANGE FOR SETS OF DATA

The data set below shows the first 10 prime numbers:
{ 2 3 5 7 11 13 17 19 23 29 }
Find the:
 a) Median
 b) Range
 c) Mean
 d) Mode

QUESTION 3
INVESTIGATE THE EFFECT OF OUTLIERS ON THE MEAN AND MEDIAN

The following data set shows how many students walked to school on different days:
{ 6 8 6 1 5 8 11 10 9 14 13 3 2 4 8 9 24 }
Find the:
 a) Mode
 b) Median
 c) Range
 d) Mean
 e) Are there any outliers?
 f) If the outlier was removed, what will happen to the median and mean?
STAGE 4: SINGLE VARIABLE DATA ANALYSIS

QUESTION 4

The following stem and leaf plot shows the heights of students in our netball team.

<table>
<thead>
<tr>
<th>STEM</th>
<th>LEAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>2335</td>
</tr>
<tr>
<td>16</td>
<td>157</td>
</tr>
</tbody>
</table>

a) Find the mean, median and range

<table>
<thead>
<tr>
<th>MEAN</th>
<th>MEDIAN</th>
<th>RANGE</th>
</tr>
</thead>
</table>

b) What is the average height?

c) What is the height of the tallest team member?

d) What was the modal height?

e) Are there any outliers?

QUESTION 5

Complete the frequency table below and then answer the following questions:

<table>
<thead>
<tr>
<th>SCORE (X)</th>
<th>FREQUENCY (f)</th>
<th>fx</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Find the mean

b) Find the median
Stage 4: Probability (Part 1)

Name:

Class:

BACKGROUND KNOWLEDGE: STAGE 3 KEY IDEAS

<table>
<thead>
<tr>
<th>STUDENTS HAVE LEARNT</th>
<th>SYLLABUS CONTENT AREAS RELATED TO THE OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Listing outcomes of chance experiments involving equally likely outcomes</td>
<td></td>
</tr>
<tr>
<td>☐ Representing probabilities using fractions</td>
<td></td>
</tr>
<tr>
<td>☐ Recognising that probabilities range from 0 to 1</td>
<td></td>
</tr>
<tr>
<td>☐ Comparing observed frequencies in chance experiments with expected frequencies</td>
<td></td>
</tr>
<tr>
<td>☐ Representing probabilities using fractions, decimals and percentages</td>
<td></td>
</tr>
<tr>
<td>☐ Conducting chance experiments with both a small and large number of trials</td>
<td></td>
</tr>
</tbody>
</table>

Refer to Stage 3 Chance.
STAGE 4: PROBABILITY (PART 1)

SYLLABUS REFERENCE
MA4-21SP represents probabilities of simple and compound events.

QUESTION 1

CONSTRUCT SAMPLE SPACES FOR SINGLE-STEP EXPERIMENTS WITH EQUALLY LIKELY OUTCOMES

a) Describe the likelihood of each of the following events occurring:
 i) The toss of a coin shows a tail
 ii) Rolling a 7 on a standard 6-sided die
 iii) Picking a red or black card from a regular pack of playing cards

b) List the sample space for the following:
 i) Tossing a coin
 ii) Rolling a standard 6-sided die

c) The following spinner shows the colours of counters in a bag.

 ![Spinner Diagram]

 i) List the possible outcomes when taking a counter from the bag?
 ii) Are the outcomes equally likely?

QUESTION 2

FIND PROBABILITIES OF EVENTS IN SINGLE-STEP EXPERIMENTS

What is the probability of obtaining the following when tossing a coin?

a) Tail
b) Head or tail
c) Neither a head or tail

QUESTION 3

IDENTIFY COMPLEMENTARY EVENTS AND USE THE SUM OF PROBABILITIES TO SOLVE PROBLEMS

A bag contains 7 green discs, 8 red discs and 5 blue discs. If one disc is drawn at random, find the probability that it is:

a) Red
b) Not red
c) Blue or green
d) Neither blue or green
Stage 4: Probability (Part 2)

Name:

Class:

SYLLABUS REFERENCE

MA4-21SP represents probabilities of simple and compound events.

QUESTION 1

RECOGNISE THE DIFFERENCE BETWEEN MUTUALLY EXCLUSIVE AND NON-MUTUALLY EXCLUSIVE EVENTS

What is the probability of obtaining the following when rolling a standard 6-sided die?

a) A number greater than 3

b) At least a 4

c) Rolling an even number and a 5

d) Rolling an odd number and rolling a 2

QUESTION 2

a) 'Rolling an even number' and 'rolling an odd number' are these events mutually exclusive or non-mutually exclusive? How do you know?

b) 'Rolling a 5' and 'rolling an odd number' are these events mutually exclusive or non-mutually exclusive? How do you know?

c) Give another example of non-mutually exclusive events
STAGE 4: PROBABILITY (PART 2)

QUESTION 2

Represent events in two-way tables and Venn diagrams and solve related problems.

Analyze the Venn diagram below and then answer the following questions:

a) How many students played tennis?

b) How many students played tennis and soccer?

c) How many students played tennis or soccer?

d) How many students played neither sport?

e) How many students are there in this year 8 group?

Sports played by Year 8

![Venn diagram with numbers: Tennis 19, Soccer 14, Intersection 20, Total 15]

QUESTION 3

Represent events in two-way tables and Venn diagrams and solve related problems.

Analyze the Venn diagram below and then answer the following questions:

a) How many students study French?

b) How many students study Japanese?

c) How many students do not study a language?

d) How many students are in year 7?

Students studying languages in Year 7

![Venn diagram with numbers: French 40, Japanese 30, Total 15]
The two way table below shows the job status of men and women in Rays Town. Complete the table and then answer the following:

<table>
<thead>
<tr>
<th>JOB STATUS – RAYS TOWN</th>
<th>EMPLOYED</th>
<th>UNEMPLOYED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>WOMEN</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) How many men are employed?

b) How many men and women are unemployed?

c) What is the population of men and women in Rays Town?

d) Interpret the information in the two-way table above as a Venn Diagram.
Notes